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Coexistence curves of cyclohexane solutions of star-shaped polystyrenes (PSs) having 6.3 and 11.1 arms 
(arm molecular weight 1.88 x 105) were measured to investigate the effects of molecular shape on the phase 
diagram near the critical point. The reduced coexistence curve O/~c versus r / r , ,  where volume fraction 4~ 
and dimensionless temperature r calculated from r = (T-19)/O with a usual temperature T and the theta 
temperature 19 were reduced by the values at the critical point, were compared with those of linear PSs. 
The reduced coexistence curves of star-shaped PSs do not superpose on the reduced universal curve of 
linear PS when the same 19 is assumed for linear and star-shaped PSs. The critical temperature T~ and 
concentration th, were compared with those of linear, randomly branched, and comb-shaped PSs. The 
location of the critical point of the star-shaped PS is very different from that of linear PS of the same 
molecular weight Mw, indicating failure of the mean-field theory of polymer solutions. The same simple 
two-parameter scaling, which predicts the relations Oc ~ ~* (= overlap concentration) and z, ~ (M,q~*)-I 
does not hold for the star-shaped and linear PSs, when the same 19 is used for linear and star-shaped PSs. 
The scaling relations do not hold either even when we use different ®s for star-shaped PSs which were 
evaluated so that the reduced coexistence curves were superposed on the universal coexistence curve of 
linear PS. The ~c of star-shaped PS lies at a lower concentration than expected from its q~* and 7", lies at 
a lower temperature than expected from (Mw~b*)- 
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I N T R O D U C T I O N  

The investigation of the phase diagram of branched- 
polymer solutions is of fundamental importance in 
understanding the relation between microscopic segment 
correlation and macroscopic behaviour of polymer 
solutions, in addition to being of practical importance 
as a basis for the fractionation of a polymer mixture of 
various molecular shapes and weights. However, both 
theoretical and experimental studies on phase diagrams 
of branched-polymer solutions are still quite limited in 
number 1-3. 

The mean-field theory of polymer solutions predicts 
that the critical polymer concentration expressed as a 
volume fraction ~b¢ and the critical temperature T¢ depend 
on the degree of polymerization N: 

q~¢-,. N -1'2 (1) 

re ~ N -  1;2 (2) 

for sufficiently large N. In equation (2), r is the reduced 
temperature expressed with the theta temperature O by: 

z = ( T - ® ) / ®  (3) 

In scaling arguments neglecting higher order interactions 
than two, the free energy per site is written as: 

F / k  T = ( a / R , ) 3 f ( O / c k * ,  ~)/a - 3 N  - 2R3) (4) 
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where f ( x )  is an unknown function, k is the Boltzmann 
constant, a is the statistical segment length, 4)*(~a3N/R3) 
is the overlap concentration, Rg is the radius of gyration 
and v is the two-body interaction 1'4. The two-body 
interaction ~) is generally given as: 

v_-r  (5) 

From equations (4) and (5), the following relations are 
derived for the critical point. 

flP¢ ~" 4 "  ~ a 3 N / R 3  (6) 

re ~ ( a 3 N Z / R 3 )  - 1 ,~ I / N ~ *  (7) 

For linear polymers, equations (6) and (7) reduce to 
equations (1) and (2), respectively s, because Rg ~ a N  1/2 in 
the ® region. Thus both the mean-field theory and the 
scaling theory give the same results regarding the 
molecular-weight dependence of ~b, and re. However, it 
does not generally apply to branched polymers. Since 
polymers of different molecular shapes cannot be distin- 
guished with the mean-field theory, the same critical point 
is predicted for both linear and branched polymers with 
the same molecular weights, as long as the very subtle 
contribution from the difference in chemical nature 
between monomer  and branching unit is neglected. 
Consequently, the same molecular-weight dependence is 
given irrespective of molecular shapes. On the other 
hand, the scaling theory predicts the different critical 
points for linear and branched polymers depending on 
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their molecular dimensions Rg. For example, for randomly 
branched polymers, molecular-weight dependence is 
predicted to be different from equations (!) and (2), 
because the N dependence of Rg of randomly branched 
polymers is expressed ~ by a power different from 1/2. 
The mean-field approximation is known to be valid only 
in the concentrated region, but the critical point is located 
in the crossover region between dilute and semidilute 5, 
so that it is not expected that the mean-field theory always 
predicts the correct location of the critical point. 

In a previous paper 2, we studied the location of the 
critical point ofa methylcyclohexane solution of randomly 
branched polystyrenes (PSs) by varying the molecular 
weight and the degree of branching. The location of the 
critical point and its molecular-weight dependence were 
found to be very different from those of linear polymers, 
showing a breakdown of the mean-field theory. In this 
study we investigate the effects of molecular shape on the 
location of the critical point using star-shaped polymers. 
Since a star-shaped polymer has a very different shape 
from a linear polymer and has a well-defined structure 
compared with a randomly branched polymer, it is a 
suitable sample for the investigation of the effects of 
molecular shape. When the degree of polymerization of 
an arm is fixed, Rg of a star-shaped polymer does not 
change so much with the number of arms f Thus the 
molecular-weight dependence of the critical points of 
such star-shaped polymers forms a striking contrast with 
that of linear polymers according to equations (6) and (7). 

We have measured coexistence curves of star-shaped 
PSs with arms of the same degree of polymerization in 
cyclohexane near their critical temperatures, and com- 
pared the obtained 4'~ and T, with data of linear, 
randomly branched and comb-shaped polymers. We also 
investigate the profile of the coexistence curve in the 
neighbourhood of the critical point. It is known that the 
profile of coexistence curves of linear polymers with 
various molecular weights can be scaled in a universal 
form in the neighbourhood of the critical point 6 '~. The 
critical amplitudes and profiles of coexistence curves of 
star-shaped polymers expressed with such scaled variables 
are examined by comparing with those for linear 
polymers. 

tation measurement, gel permeation chromatography 
and light scattering. Table 1 lists the characteristics of 
the star-shaped PS samples thus obtained. Non-integral 
numbers of arms indicate the existence of distribution in 
the number of arms, but the distribution is quite narrow 
since the sedimentation pattern showed a very sharp 
peak. Details of sample preparation and characterization 
will be described elsewhere TM. Cyciohexane was dried 
over calcium hydride powder and purified by fractional 
distillation. 

Coexis tence curve measurement  

Concentrations of demixed phases were measured by 
a specially designed differential refractometer (Fivure I ). 
A beam of light refracted from a solution in a Brice-type 
optical cell was detected at a particular channel on a 
photodiodide array (image sensor). From the position of 
the channel detecting the refracted light, concentration 
was calculated by using calibration curves predetermined 
as functions of temperature. The incident laser beam was 
expanded in the vertical direction so that it could 
illuminate both the upper and lower phases of the 
demixed solution in the cell. Thus the concentrations of 
both phases were determined simultaneously without 
taking the solution out of the cell. In the case of 
the PS/cyclohexane solution, the concentration can be 
measured with this apparatus up to 25wt% with an 
accuracy of _+0.30wt% in a temperature range from 20 
to 60"C. The optical cell containing the sample solution 
and reference solvent was stoppered with Teflon plugs 
which were pressed tightly with a metal frame to prevent 
vaporization of the solvent and absorption of moisture 
for a couple of weeks. After a sample solution was 
homogenized above the critical temperature 7~,, it was 
cooled down to a desired temperature below "/', and 
allowed to stand overnight to reach two-phase equilibrium. 
Temperature was controlled to within _-_ 0.02'~C. 

Table I 

Sample  

Charac ter i s t ics  of s tar -shapcd PS samples  

Molecu la r  weight,  N u m b e r  of Radius  of gyra t ion .  
M~" arms.  R. (nm) b 

EXPERIMENTAL 

Samples  

Star-shaped PSs were prepared by coupling living 
polystyryl anions on to a low molecular weight poly(4- 
vinylphenyldimethylvinyisilane) which had been pre- 
viously anionically polymerized. Living polystyryl anions 
were end-capped with a few units of butadiene to reduce 
the influence of steric factors. An excess amount of the 
living arm polymers was added in the coupling reaction 
to ensure completion of the reaction. At each step of the 
sample preparation, a small amount of the sample was 
taken out of the reaction vessel to be subsequently 
characterized. After crude fractionation by the precipi- 
tation method using benzene and methanol, the star- 
shaped polymers were further fractionated with a prep- 
arative gel permeation chromatograph apparatus con- 
sisting of three columns (two G5000 H and one G M H ;  
Tosoh Co.). The star-shaped PSs and their constituent 
arm and centre polymers were characterized by vapour 
pressure osmometry, membrane osmometry, sedimen- 

NF-I  1.20 × 10 t' 6.3 22.5 
NF-4 2.05 x 106 I 1.1 23.9 

" M~ of an a r m . ,  1.88 x l0  s 
In cyclohexane at 34.5 ( '  

Top view 

I 

Side view 

Beam Slit Lens ' I,=n~ "T" 
exooodor i_!_: . . . . . .  i exooodor r=ce type cell 

Thermostat 

Micro I Digital 
computer ~ - -  Imemoriscope 

Figure  l Schemat ic  d i ag ram of the differential  refractometer  for 
coexistence curve measurement s  
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Figure 2 Coexistence curves for star-shaped PSs in cyclohexane: (A)  
NF-I :  ( ~ )  NF-4. Closed symbols indicate the critical points 

RESULTS AND DISCUSSION 

Coexistence curve and critical point 

Figure 2 shows coexistence curves of star-shaped PSs 
in cyclohexane. The coexistence curve for each star- 
shaped polymer was determined with two different initial 
concentrations. Concentrations of coexistence phases 
which separated from different initial concentrations fall 
on a single curve within the experimental accuracy. This 
indicates that the effect of polydispersity can be neglected 
in the present system. 

These data were fitted to the following universal form 
proposed by Chu and Wang 8 for linear PS solutions: 

~ -  t/J~ = A~e p + B S  j +A (9) 

c , - I T -  T¢I/T~ (10) 

where the dimensionless variable ~b, which is related to 
volume fraction 4) through an adjustable parameter R as 

~,- (11) 
q~ + R(I -qb) 

was introduced to symmetrize coexistence curves of 
polymer/solvent systems 7. The subscripts c, d, and s of 
the variable ~, and the critical amplitudes A and B 
designate critical point, dilute phase and semidilute 
phase, respectively. The critical exponent/3 is fixed at the 
Ising value 0.327 and A is at 0.5. On the assumption of 
A d = A s, equations (8) and (9) yield 

~,s+ ~d =2ff~ + (Bs-  Bd)C a+a (12) 

~J~ - ~Od = 2Ado ~ + (B~ + B d)t: # + a (13) 

The data fitting was made in two steps. First, Tc was 
determined by plotting the concentration difference 
between two phases Aqb(=--4L,-4~d) to the power !//3 
against T and extrapolating (A~) l~a to zero. Then, the 
data of ¢h~, qSd and T were fitted to equations (10)..-(13) 

by the non-linear least squares method with Ad, B d, B s 
and R taken as parameters. We arbitrarily set ff~ = 0.25, 
the same as in case of linear PSs 8. The T~ and the 
parameters thus obtained are listed in Table 2. 

For linear PSs in cyclohexane, Chu and Wang 8 have 
evaluated these parameters as functions of N ( = Mw/104) 
using the data by Nakata et al. 11.12. 

A~(ln)=0.595N °1°14 Bd(ln) = -- 0.425N °.2s°4 

Bs(ln )-- 0.018N 0"2564 

These relations give for the same molecular weight as 
NF- l :  

Ad(ln) = 1.564 Bd(ln) = -4 .89  Bs(in)=0.21 

and for the same molecular weight as NF-4: 

Ao(ln) = 1 .651 Bd(in)= -5 .62  Bs(ln)= 0.24 

The amplitude A a for the star-shaped polymers is slightly 
larger than that of the linear polymers (Table 2). The 
critical amplitude A, which is defined with volume 
fraction as A~b -- A~: ~, can be calculated from A a as follows. 
Substitution of equations (8), (9) and (l l) into the 
definition of A 

A = iim Aq~ (14) 
e~0 ~# 

yields 

2Ad4)~(1 -qb~) 
A = ~ 10.67Adqbc(1 -4~¢) (15) 

qJ~(1 -~'c)  

For star-shaped PSs, we obtain A=0.740 for NF-1 and 
A =0.751 for NF-4 by using the values of Table 2. The 
critical concentrations ~¢ of linear PSs in cyclohexane 
have been formulated as a function of molecular weight 
in reference 8. By using q5¢ calculated from the formula 
and Ads shown above, we obtain A =0.528 and 0.457 for 
the linear PSs of the same molecular weights as NF-I 
and NF-4, respectively. The critical amplitude A of the 
star-shaped PS is about !.5 times larger than that of the 
linear PS of the same M, .  The difference in A between 
linear and star-shaped PSs is larger than the difference 
in A d, because the difference in molecular shape is 
reflected in A through 4,,. 

Coexistence curves of linear PS solutions of various 
molecular weights are known 6 to be scaled onto a 
universal curve when they are plotted with reduced 
variables qb/4), and r /L.  We attempt to test whether the 
universality exists among the polymers of different 
molecular shapes. To calculate the reduced temperature 
r from T, we need to evaluate the O temperature of 
star-shaped PS. Here we use the same value for the O 
temperature of star-shaped PS as that for linear PS 
(® = 34.5°C) because the two-body interaction is generally 
considered to be independent of molecular shape and 

Table 2 Characteristic parameters of the coexistence curve for star- 
shaped PSs 

7", 4), 
Sample ( C )  (vol. fraction) R A n B d B, 

NF-I 28.0 0.0393 0.1226 1.836 - 8.20 - 3.26 
NF-4 28.4 0.0371 0.1155 1.970 - 7.95 - 3.62 

A~=Au', ~u, = 0.25 
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Figure 3 Reduced coexistence curves of star-shaped and linear I)Ss 
in cyclohcxanc: I ~ )  N F - I  IV) NF-4: (O) lincar 11. M w - 2 . 0 x  105: 
([JI linear ~ ' .  M~ = 1.56 × 10" 

weight, which implies that the ® temperature of star- 
shaped PS should be equal to that of linear PS within 
the framework of the treatment shown above (see 
equation (5)). Coexistence curves of star-shaped and 
linear ~.~2 PSs are plotted with the reduced quantities 
(D/4~¢ and T/r~ in Fiqure 3. The reduced coexistence curves 
of the star-shaped polymers obviously deviate from the 
universal curve of the linear polymers. It appears that 
the amplitude of A4~,"q~ increases with increasing number 
of arms: the curves of the star-shaped polymers are 
located outside the universal curve of the linear polymers, 
and the curve of the star-shaped polymer with the larger 
number of arms is slightly broader than that with the 
smaller number of arms. These results show that the 
coexistence curves of homologous polymers of different 
molecular shapes do not scale in a single universal form 
as long as thc same ® temperature is assumed for these 
polymers. It is not clear whether the observed deviation 
arises from lack of the universality of coexistence curves 
among the polymers of different shapes or from the 
molecular-shape dependence of the ® temperature. We 
measured the second virial coefficients A2 ofcyclohexane 
solutions of star-shaped PSs at several temperatures near 
34 .5C by using the light scattering technique, but could 
not evaluate the ® temperature with sufficient accuracy 
because A 2 has a very small temperature dependence in 
this region. Conflicting experimental results have been 
reported for the ® temperature of star-shaped polymers. 
The ® temperature determined as the temperature at 
which A, vanishes, is known to be lower than that of 
the linear polymer in the same solvent when the M,~ of 
the arm is not large ~3, but is identical if the M,,. of the 
arm is sufficiently large (Mw>~ 105 when the number of 
arms is not very large) ~4']5. On the other hand, the O 
temperature determined as the critical solution tempera- 
ture of a polymer of infinitely large molecular weight is 
slightly lower than the ® temperature of a linear 
homologue -~. 

Molecular-wei,qht dependence of q~ and r~ 
Figures 4 and 5 show the molecular-weight dependence 

of 4)~ and r e for star-shaped and linear PSs in cyclohexane. 
For comparison, the data of methylcyclohexane solution 
of linear, randomly branched and comb-shaped PSs are 
also shown. The values of 4)~ and z~ for linear PSs were 
calculated from the empirical equations obtained by 
Perzynski et al. ~6 and Chu and Wang s. The results of 

i0 -I 

.@o 

I 0 -;'L 
10 5 

\ 

10  6 I 0  7 

M 
W 

Figure 4 Molecular-weight dependence of critical concentration 4)¢ of 
PSs: in cyclohexane, ( h )  star-shaped; ( ) lineara'16: in methyl- 
cyclohexane, ( .- ) lineara; ( 1 )  randomly branched 2 with degree 
of branching DVB/St = l/1000 molar ratio; (41,) randomly branched 2 
with S t /DVB= 500/1; IV) comb-shaped. Circle 10) corresponds to 
star-shaped PS with two arms 
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Figure 5 Molecular-weight dependence orlrJ for various-shaped PSs: 
( - )  star-shaped PS calculated with 0 = 3 2 . 4  and 32.1 (7. The other 
symbols are the same as in I"i(lure 4 
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randomly branched PSs have been reported previously 2. i o 2 
These randomly branched PSs were prepared by copolym- 
erization of styrene (St) and a branching agent p- 
divinylbenzene (DVB) in molar ratios of 500:1 and 
1000:1. The anionically polymerized comb-shaped PS 
consists of a stem of Mw=3.68 x 105 and 118 branches 
of a uniform length (Mw = 6.32 x 10'). Again, we assumed 
that the ® temperatures of these branched polymers are 
the same as that of the homologous linear polymers in ~= 
calculating the reduced temperature r. 

The Flory-Huggins theory gives the same critical point 
to polymers of the same molecular weight in the same 
solvent regardless of their molecular shapes. However, 
regarding the critical concentration q~, none of the data i o ~ 
points of branched PSs fall on the lines of linear PSs. io 5 
The critical concentration is obviously increased by 
branching. The critical temperature re of randomly 
branched PS does not change so much with the degree 
of branching in contrast with the critical concentration 
~b¢, and deviation from the linear polymers is not clearly 
observed due to relatively large experimental scatter. In 
contrast with this, rc of star-shaped PS largely deviates 
from the z¢-Mw relation of linear PS. The critical 
temperature T¢ of star-shaped PS is lower than T¢ of 
linear PS of the same molecular weight, which is I°-~ 
consistent with the results by Cowie et al. 3 for the upper 
critical solution temperatures of PS--cyclohexane systems. 
The validity of the assumption that the ® temperature 
of branched PS is identical to that of linear PS is not 
clear as mentioned above. If the ® temperatures of 
star-shaped PSs are determined so that the reduced ~.~ 
coexistence curves of both polymers fall on the universal 
curve of linear PS at an arbitrarily chosen concentration 
~b/q~ =4,  we obtain ® = 32.4°C for NF-I and ®=32.1°C 
for NF-4. When these values are used, the reduced critical 
temperatures re of the star-shaped PSs fall on the line of 
linear PS. 

Relationship of c~¢ and re to chain dimension Rg 
In the recent theories of polymer solutions, which take 

into account the correlation of segment density caused 
by connectivity of segments, chain dimension plays an 
important role in describing solution properties, as seen 
in equation (4) for example. Figure 6 shows the Rg of 
various shaped PSs at the ® temperatures of linear PS 
as functions of Mw. The Rg of randomly branched PSs 
can be also expressed by the power law Rg ~ N ", and the 
exponent v = 0.38-0.40 is smaller than that of the linear 
polymers (v=0.5). The Rg of the star-shaped PS with a 
fixed arm length changes only slightly with the number 
of arms. From Fi,qure 6, it appears that the Rg decrease in 
an order linear > randomly branched > comb-shaped > 
star-shaped PSs when they are compared at a fixed 
molecular weight. Consequently, segment densities 
a3NR~ 3 (~b*) inside polymer coils increase in the 
reverse order at a fixed molecular weight. 

To see applicability of the scaling relation expressed 
by equation (6), the critical concentrations ~ are plotted 
against q~* in a double logarithmic scale in Figure 7. Data 
points of the randomly branched polymers fall approxi- 
mately on the straight line of the linear polymer, whereas 
those of the comb-shaped and star-shaped polymers 
deviate seriously from the line. The critical concentration 
of the star-shaped polymers is located at a lower 
concentration than that expected from the overlap 
concentration q~*, and the polymer with the larger 

J 

I I [ I I I I l l  I I I I I I I I 
I® s i0 r 

M w 

Figure 6 Molecular-weight dependence of radius of gyration R= for 
various-shaped PSs at the ® temperatures of linear PS: ( . . . .  ) linear; 
(/k) star-shaped; (©) star-shaped (two arms); (1) randomly branched 
(DVB/St=I/1000): (4,) randomly branched (St/DVB=500); (V) 
comb-shaped 

1(5 i I I I i I i i I i 

i o  - z  i o  -~ 3 x l O  - t  

Figure 7 Double  logarithmic plots of ~ versus fb* for various-shaped 
PSs. The symbols are the same as in Figure 4 

number of arms shows the larger deviation. The deviation 
of comb-shaped PS from the line of linear PS is smaller 
than the deviation of star-shaped PS, which is in contrast 
to the plot of~b c versus M ,  (Figure 5), where comb-shaped 
PS shows the largest deviation from the line of linear PS. 
The deviation increases in the order of increasing segment 
density inside a polymer coil. It seems that qSc is not 
simply determined by the average segment density 4~* 
inside a polymer coil, but that it also depends on the 
segment distribution inside the coil. It should be noted 
that the slope of the linear PS data in the double- 
logarithmic scale apparently deviates from unity. Figure 
7 indicates that equation (6) should be replaced by" 

~---  (qS*) ~ ~t~0.76 (6a) 

The reduced critical temperature ~ is plotted against 
" 2/ 3 N 2 R ~ 3 ,  (Mw/pNA) /Rg ~ where p is density of PS and 

NA is the Avogadro constant, in Figure 8 to examine 
applicability of equation (7). The line of the linear PS 
data has a slope nearly equal to unity, which agrees with 
equation (7). However, no data of the branched polymers 
fall on the lines of the linear polymers, including the 
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randomly branched polymers whose critical concen- 
trations have been approximately scaled on to the line 
of the linear polymer. The critical temperature re appears 
to be more sensitive to the molecular shape than the 
critical concentration 0~. Even when the (9 tcmperature 
determined so as to give the universal coexistence curve 
in Figure 3 is used in the calculation of r~, the reduced 
critical temperatures r~ of star-shaped PSs do not fall on 
the line either. 

Contribution Of three-body interaction 
Since equations (6) and (7) were proposed for randomly 

branched polymers and there is no reason to assume that 
they are applicable to star-shaped polymers, it is not 
surprising that the results of the star-shaped polymers 
deviate from these equations. The experimental study on 
the osmotic pressure 7t by Higo et al. '~ has also shown 
that branched polymers do not follow the same scaling 
relation as that of linear polymers: the osmotic pressures 
~z of linear polymers of various molecular weights are 
known to be scaled by the relation r~N/OkT=f(ck/'O*), 
but the data of comb-shaped polymers deviate from the 
relation of linear polymers. In addition, even linear 
polymers do not follow equation (6) exactly. These facts 
suggest that equation (4) is inappropriate for the 
universal scaling form applicable to polymers of different 
molecular shapes. A simplification made in equation (4) 
is to neglect higher order interactions. However, the 
higher-order interaction cannot be neglected in the (9 
region where two-body interaction becomes very small. 
To estimate the contribution from the higher-order 
interaction, we calculate the critical point based on a 
simple classical expression, in a reduced form, of free 
energy containing up to three-body interaction ~,~ as: 

F =--q9 ln ( : , )+ t?~b2+u~0  3 
kT  N 

( : , )  ')a3N2(~)~2~-(l"lf16N3(~))31 
= (  a " ~ 3 [ - ( ] )  I n  + .... 3 

\Rd L~* R, \6" /  R, ~ 6* 

= ( R ) 3 ( ~ l n ~ + ~ 2 + ( ' ; ' o ~  3) (16) 
g 
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where the reduced quantities were defined as ~ = ~b/0*, 
~)=D,;'(a 3 ~ r -  2 0 3 " t  ~, %), and ~b=o).,'(a 6 N  3R;). The three- 
body interaction parameter ¢,) is generally assumed to be 
independent of T and N. This equation yields: 

~ = (6d)) 12 (17) 

~ =  -- (6cb) 12 (18) 

which reduce to 

0¢=(6eJN ) 12 (17a) 

r~ = - (6e)."N)t 2 (18a) 

These equations are independent of R~ and thus cannot 
explain the observed molecular-shape dependence. The 
coexistence curve in the vicinity of the critical point is 
calculated from equation (16) by the relation is: 

(A~b) 2 = 6[(?3F..~Tg¢/~2I~)...(g4F ~0a'lc)] 

to be 

AO,.dpc=(_6~f~¢)t2(r,r~)l 2 \ 6 ( r . r~ ) -  (19) 

The exponent 1/2 is obtained as a consequence of the 
classical expression used in equation (16). More important 
is that the critical amplitude ,4 of the scaled coexistence 
curve AS/O, t'ersus r/'r~ is independent of (o. Therefore 
no improvement is made by introducing a new scaling 
equation (16). Equations (17a), (18a) and (19) show that 
the thrce-body interaction parameter cannot explain the 
breakdown of the simple scaling form of equation (4) for 
either the location of the critical point or the profile of 
the coexistence curve. 

When we take into account the higher order inter- 
actions, wc have to distinguish two ® temperatures, i.e. 
the renormalized (9 temperature at which the apparent 
two-body interaction disappears and the bare (9 tempera- 
ture at which the real two-body interaction disappears ~' t3. 
We have developed our discussion mainly based on the 
bare (9 temperature. The chemical potential /~ may bc 
written as ~ '~' 

t ,~ /2~kT=,+(3 .2 ) ,~4~- , '=r '=(T- (9 ' ) / (9 '  (20) 

from which we can calculate renormalized two-body 
interaction ~)' and renormalized (9 temperature (9'. For 
the concentration q5 in equation (20), ~e should use the 
radial distribution function y(r) at r-~u instead of the 
average concentration inside a polymer coil a3~r~'v..lx~,'°~' 
according to de Gennes ~'~. Since .q(r~ a Dis considered to 
be larger in star-shaped polymers than in linear polymers, 
the renormalized (9 temperature would be reduced. This 
is consistent with the fact that the (9 temperature 
determined so as to give a universal phase diagram is 
lower than the (9 temperature of linear PS. This suggests 
that deviation from the universality among various- 
shaped polymers may be improved by using an experi- 
mentally determined renormalized (9 temperature. How- 
ever, the (9 temperature which satisfies the universal 
coexistence curve could not satisfy the scaling relation 
equation (7) as seen in Fi#ure 8. Thus, it does not appear 
that the universal relation will hold among various- 
shaped polymers by using the rcnormalizcd (9 tempera- 
ture. 

ACK N O W L E D G E M  ENT 

We wish to thank Dr Fujimoto of Nagaoka Technical 

POLYMER, 1991, Volume 32, Number 17 3223 



Phase diagram of a PS/cyclohexane system." H. Yokoyama et al. 

University for providing the anionically polymerized 
comb-shaped PS. 

R E F E R E N C E S  

1 Daoud, M., Pincus, P., Stockmayer, W. H. and Witten, T. 
Macromolecules 1983, 16, 1833 

2 Satoh, S., Okada, M. and Nose, T. Polym. Bull. 1985, 13, 277 
3 Cowie, J. M. G., Horta, A., McEwen, I. J. and Prochazka, K. 

Polym. Bull. 1979, 1,329 
4 Daoud, M. and Jannink, G. J. Phys. (Les Ulis, Fr.) 1976, 37,973 
5 de Gennes, P. G. 'Scaling Concpets in Polymer Physics', Cornell 

University Press, Ithaca, 1979 
6 Izumi, Y. and Miyake, Y. J. Chem. Phys. 1984, 81, 1501 
7 Sanchez, I. C. d. Appl. Phys. 1985, 58, 2871 
8 Chu, B. and Wang, Z. Macromolecules 1988, 21, 2283 

9 Mel'nichenko, Yu. B. and Klepko, V. V. d. Phys. (Les U/is, Ft.) 
1989, 50, 1573 

10 Takano, A., Okada, M. and Nose, T. Polymer in press 
11 Nakata, M., Kuwahara, N. and Kaneko, M. J. Chem. Phys. 

1975, 62, 4278 
12 Nakata, M., Dobashi, T., Kuwahara, N., Kaneko, M. and Chu, 

B. Phys. Rev. A 1978, 18, 2683 
13 Candau, F., Rempp, P. and Benoit, H. Macromolecules 1972, 

5, 627 
14 Roovers, J. E. L. and Bywater, S. Macromolecules 1974, 7,433 
15 Bauer, B. J., Hadjichristidis, N., Fetters, L. J. and Roovers, 

J. E. L. J. Am. Chem. Soc. 1980, 102, 2410 
16 Perzynski, R., Delsanti, M. and Adam, M. J. Phys. (Les Ulis, 

Fr.) 1987, 48, 115 
17 Higo, Y., Ueno, N. and Noda, I. Polym. d. 1983, 15, 367 
18 Landau, L. D. and Lifshitz, E. M. 'Statistical Physics Part I', 

3rd Edn, Pergamon Press. Oxford, 1980, Ch. XIV 
19 de Gennes, P. G. 'Scaling Concepts in Polymer Physics', Cornell 

University Press, Ithaca, 1979, p. 116 

3224 POLYMER, 1991, Volume 32, Number 17 


